A New Cyclopeptide from Clausena anisum-olens

by Yun-Song Wang a), Hong-Ping He a), Jing-Hua Yang b), Yue-Mao Shen a), Jun Zhou a), and Xiao-Jiang Hao * a)

- a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P. R. China
- b) School of Pharmacy, Center for Advanced Studies of Medicinal and Organic Chemistry, Yunnan University, Kunming, Yunnan 650091, P. R. China

(phone: +86-871-5219684; fax: +86-871-5150227, e-mail: xjhao@mail.kib.ac.cn)

A new cyclopeptide, clausenain I (1), has been isolated by a multi-step chromatography procedure from *Clausena anisum-olens*. Its structure was elucidated as cyclo (-Gly¹-Ile²-Val⁴-Leu⁵-Ile⁶-Ile⁶-Leu²-Leu⁴-) by extensive 2D-NMR spectroscopic methods and chemical evidence. It is the first time that a natural cyclic peptide has been isolated from the genus *Clausena*.

- **1. Introduction.** The plants of the genus *Clausena* (Rutaceae) are shrubs widely distributed in the south of China [1]. Previous studies revealed that the plants of the genus Clausena mainly contained carbazole alkaloids [2-4] and coumarins [5-7]. Clausena anisum-olens (Rutaceae) is a shrub growing in Hekou County of the Yunnan Province. The aerial parts of this plant have been used for the treatment of dysentery and arthritis [1]. The chemical constituents of C. anisum-olens have not been investigated until now. During our search for active principles, a new cyclic nonapeptide, clausenain I (1; Figure), was isolated from C. anisum-olens by a multi-step chromatography procedure. Natural cyclic peptides, which are widely distributed in many higher plants, exhibit a large range of biological activities such as antibiotic, antiinflammatory, and cytotoxic activities and have often been used as models for studies of structural features of proteins [8]. Only a minor number of cyclopeptides have been isolated from the plants of Rutaceae [9]. This is the first time that a natural cyclic peptide has been isolated from the genus Clausena. Herein, we describe the isolation and structural elucidation of the new cyclopeptide 1 by extensive 2D-NMR spectroscopic methods.
- **2. Results and Discussion.** Clausenain I (1) was obtained as white amorphous powder by a multi-step chromatography procedure from *C. anisum-olens*. It gave an $[M + \mathrm{Na}]^+$ peak in the HR-ESI-MS at m/z 970.6681, which was appropriate for the molecular formula $C_{49}H_{89}N_9O_9$. Compound 1 showed a positive reaction with the chlorine/o-tolidine reagent, indicating the presence of amide groups, and a negative reaction with ninhydrine, suggesting that 1 is a cyclic peptide. The intense absorptions between $1600 1700 \,\mathrm{cm}^{-1}$ and between $3100 \,\mathrm{to} 3400 \,\mathrm{cm}^{-1}$ in the IR spectrum suggested the presence of the amide C=O and NH groups, respectively.

Fig. 1. The structure and selected NOESY correlations of compound 1

At 300 K, the ¹H-NMR spectra (D_5)pyridine) of **1** gave only three broad NH signals and the H-C(α) signals of the amino acid residues overlapped heavily. However, when the temperature was raised to 325 K, a well-resolved ¹H-NMR spectrum with sharp proton signals (see the *Table*) was obtained. Assignment of ¹H-NMR signals to specific protons in individual residues was obtained by 2D homonuclear COSY and HMQC-TOCSY experiments to show the complete spin systems of the amino acid residues. The corresponding δ (C) were determined on the basis of HMQC and HMBC experiments.

The $\delta(H)$ from 6.00 to 10.00 and 3.00 to 6.00 in the ¹H-NMR of **1** showed the presence of 7 NH (partly overlapped) and 10 H-C(α), respectively. At higher field, 16 Me signals were present. The ¹³C-NMR and DEPT spectra of **1** indicated the presence of 9 CH(α) or CH₂(α) groups at $\delta(C)$ 30 to 70 and 16 Me groups at $\delta(C)$ 10-30. The $\delta(H)$ and $\delta(C)$ of the amino acid residues (except for the quaternary C-atoms) can be assigned simultaneously by 2D HMQC-TOCSY, because this technique provides not only total H-correlations in the F_2 dimension but also total C-correlations (except for the quaternary C-atoms) in the F_1 dimension [10]. Thus, detailed analysis of the ¹H, H COSY, HMQC-TOCSY, HMBC, and NOESY data of **1** led to the complete assignment of all $\delta(H)$ and $\delta(C)$ (*Table*).

Careful analysis of the 1D-NMR data together with the ¹H, ¹H COSY and HMQC-TOCSY data identified **1** as a peptide composed of nine amino acid residues; *i.e.* 1 glycine, 1 valine, 4 isoleucine, and 3 leucine residues. Amino acid analysis following hydrolysis of **1** at 120° with 6N HCl confirmed the presence of Gly (1 equiv.), Val (1 equiv.), Ile (4 equiv.), and Leu (3 equiv.). Considering that the 9 identified amino acid residues account for 8 degrees of unsaturation, the remaining unsaturation degree strongly indicated that a cyclic moiety was involved in the structure of **1**. Chemical analyses revealed a negative reaction of **1** with ninhydrine but a positive one after hydrolysis of **1** with concentrated HCl solution, thus establishing the structure of a monocyclic peptide.

Table. ¹H- and ¹³C-NMR Data ((D₅)pyridine; 325 K) of Compound 1. δ in ppm, J in Hz.

Gly ¹ Ile ²	CH ₂ (α) NH CO	4.68 (dd, J = 5.5, 15.5), 3.88 (dd, J = 4.5, 15.5)	44.2 (t)
Ile^2	CO	9.10 (br. s)	• •
Ile ²	CO		170.0 (s)
	$H-C(\alpha)$	4.98 (t, J=7.5)	58.2 (d)
	$H-C(\beta)$	2.42 (m)	37.1 (d)
	$CH_2(\gamma)$	1.81, 1.44 (2 <i>m</i>)	25.2(t)
	Me (δ)	1.02 (d, J = 5.5)	15.8 (q)
	$Me(\delta)$	1.17 (d, J = 7.0)	11.2 (q)
	NH	8.40 (br. <i>s</i>)	170.1 ()
	CO		172.1 (s)
Ile ³	$H-C(\alpha)$	4.87 (t, J = 8.5)	58.5 (d)
	$H-C(\beta)$	2.31 (m)	37.0 (d)
	$\mathrm{CH}_2(\gamma)$	1.39 (m)	25.4(t)
	$Me(\delta)$	1.02 (d, J = 5.0)	16.1 (q)
	$Me(\delta)$	0.86 (t, J = 7.5)	11.6 (q)
	NH	9.10 (br. <i>s</i>)	4=0.0 ()
Val ⁴	CO		173.2 (s)
	$H-C(\alpha)$	4.53 (br. s)	62.3(d)
	$H-C(\beta)$	2.86 (1 H, m)	29.5 (d)
	$Me(\gamma), Me(\gamma')$	1.12 (d, J = 8.5)	19.0(q), 19.8(q)
	NH	8.95 (br. s)	172 0 (-)
	CO		173.0 (s)
Leu ⁵	$H-C(\alpha)$	5.03 (br. s)	53.0 (d)
	$CH_2(\beta)$	2.12, 2.31 (2 <i>m</i>)	39.7(t)
	$H-C(\gamma)$	1.91 (m)	24.7 (d)
	$Me(\delta), Me(\delta)$	$0.92-1.02 \ (m)$	21.9(q), 23.0(q)
	NH	9.05 (br. <i>s</i>)	171 0 (*)
	CO		171.9 (s)
Ile ⁶	$H-C(\alpha)$	4.56 (br. s)	60.6 (d)
	$H-C(\beta)$	2.53 (m)	36.8 (d)
	$\mathrm{CH}_2(\gamma)$	1.81 (m)	25.0(t)
	$Me(\gamma')$	0.97 (d, J = 7.0)	15.8 (q)
	$Me(\delta)$	1.14 (t, J = 7.5)	11.2 (q)
	NH	8.90 (br. s)	172.7 (-)
	CO	5.05 (t)	172.7 (s)
Ile ⁷	$H-C(\alpha)$	5.03 (br. t)	58.5 (d)
	$H-C(\beta)$	2.23 (m)	37.0 (d)
	$CH_2(\gamma)$	$1.39 \ (m)$	25.3(t)
	$Me(\gamma')$	1.11 (d, J = 7.0)	16.1 (q)
	$Me(\delta)$	1.21 (t, J = 7.0)	11.6 (q)
	NH	8.78 (br. s)	171 6 (*)
Leu ⁸	CO	(1	171.6 (s)
	$H-C(\alpha)$	5.15 (br. dd , $J = 5.5$)	52.0 (d)
	$CH_2(\beta)$	2.06 (m)	41.9 (t)
	$H-C(\gamma)$	1.91 (<i>m</i>)	25.0(d)
	$Me(\delta), Me(\delta')$	$0.92 - 1.02 \ (m)$	22.2(q), 23.0(q)
	NH CO	8.90 (br. s)	173.4 (s)
Leu ⁹	$H-C(\alpha)$	4.77 (br. s)	53.0 (d)
LCu	$CH_2(\beta)$	2.12, 2.06 (2m)	39.8 (t)
	- 0 /		25.0 (d)
	$H-C(\gamma)$ $Me(\delta), Me(\delta')$	1.91 (m)	` /
	NH	0.92 – 1.02 (<i>m</i>) 9.14 (br. <i>s</i>)	22.2(q), 22.8(q)
	CO	7.1.1 (UI. 3)	171.7 (s)

This work was financially supported by two grants from the *National Natural Science Foundation of China* (Nos. 39525025 and 30200350). The authors are grateful to the Analysis Group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for measuring the ¹H- and ¹³C-NMR, FAB-MS, HR-ESI-MS, and IR data.

Experimental Part

General. TLC: commerical silica-gel plates (Qing Dao Marine Chemical Group Co.) CC = Column chromatography. Optical rotation: Jasco 20-MC polarimeter. IR Spectra: Nicolet Avatar-360 spectrophotometer; \tilde{v}_{max} in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker AV-500 spectrometer; chemical shifts δ in ppm rel. to SiMe₄ as internal standard and coupling constant J in Hz. FAB-MS: VG Autospec-3000 mass spectrometers; in m/z (rel. %).

Plant Material. The aerial parts of *C. anisum-olens* were collected in Hekou, Yunnan Province, P. R. China, in April 2002. The plant was identified by Prof. *D. D. Tao* of the Kunming Institute of Botany; a voucher specimen (No. 02041705) is deposited in the Kunming Institute of Botany, Kunming, China.

Extraction and Isolation. The powdered aerial parts of *C. anisum-olens* (22.5 kg) were extracted (3 ×) with 95% EtOH. The extract was then evapoarted to give a brown syrup, which was partitioned in H_2O and extracted with petroleum ether, AcOEt, and BuOH. The AcOEt extract (110.5 g) was subjected to CC (silica gel, CHCl₃/MeOH 100:1 \rightarrow 1:1, then MeOH); *Fractions I*–*XIX. Fr. XV* was resubmitted to CC (silica gel, then *Sephadex LH-20*): (30 mg).

Clausenain I (= Cyclo(glycyl-L-isoleucyl-L-isoleucyl-L-valyl-L-leucyl-L-isoleucyl-L-isoleucyl-L-isoleucyl-L-leucyl-L-leucyl-L-leucyl-L-leucyl), 1). White amorphous powder. [α] $_D^{2D}$ = -88° (c = 0.2, MeOH). IR (KBr): 3434, 1640. 1 H and 13 C-NMR Table. FAB+-MS (pos.): 950 (100 [M + 3] $^{+}$). HR-ESI-MS: 970.668 1([M + Na] $^{+}$ C₄₉H₈₉N₉O $_9^{+}$, calc. 970.6680).

REFERENCES

- Institutum Botanicum Kunmingenge Academiae Sinicae, 'Flora Yunnanica, Tomus 6 (Spermatophyta)',
 Ed. C. Y. Wu, Science Press, Beijing, 1995, p. 767 (in Chinese)
- [2] A. Chakraborty, B. K. Chowdhury, P. Bhattacharyya. Phytochemistry 1995, 40, 295.
- [3] T. S. Wu, S. C. Huang, P. L. Wu, Tedrahedron Lett. 1996, 37, 7819.
- [4] T. S. Wu, S. C. Huang, P. L. Wu, Heterocycles 1997, 45, 969
- [5] H. P. He, Y. M. Shen, Y. N. He, X. S. Yang, W. M. Zhu, X. J. Hao, Heterocycles 2000, 53, 2067.
- [6] C. Ito, M. Itoigawa, S. Katsuno, M. Omura, H. Tokuda, H. Nishino, H. Furukawa, J. Nat. Prod. 2000, 63, 1218.
- [7] K. Nakamura, Y. Takemura, M. Ju-ichi, C. Ito, H. Furukawa, Heterocycles 1998, 48, 549.
- [8] C. Auvin-Guette, C. Baraguey, A. Blond, H. S. Xavier, J. L. Pousset, B. Bodo, Tetrahedron 1999, 55, 11495.
- [9] T. Mastumoto, K. Nishimura, K. Takeya, Chem. Pharm. Bull. 2002, 50, 857.
- [10] R. W. Teng, Z. T. Ding, Y. N. He, C. R. Yang, D. Z. Wang, Chinese J. Mag. Reson. 2003, 20, 397.

Received March 9, 2005